The Language of General Relativity Essential Knowledge to Get Started

Chen-chao Zhao

0810200014

Department of Physics Beijing Normal University

July 6, 2010

Abstract

There are two reasons why beginners complain that general relativity is difficult. One is that the geometrical picture is hard to visualize: 4 dimensional, curved spacetime. The other one is the startling tensor algebra. Frankly speaking, nobody could visualize 4-D curved space without the help of logics and analogies which indeed take a lot of talents. Nevertheless, once you conquered the algebra, the pain would be much eased. This article is a summary of my knowledge of the algebra.

1 Introduction

What's general relativity all about? Well, it could be summed up in two statements:

- Spacetime is a curved pseudo-Riemannian manifold with a metric of signature (- + ++).
- The relationship between matter and the curvature of spacetime is contained in the equation

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 8\pi G T_{\mu\nu}$$

It is helpful to introduce manifolds since tensors fields are defined on them. An *n*-manifolds are a class of geometrical objects that locally look like¹ \mathbb{R}^n . The second statement could be decoded as "matter curves spacetime while spacetime tells matter where to go." Next, let's run into tensors. I will first provide general ideas of tensors then move on to specific ones.

.

¹Homomorphism, to be precise.

2 Tension of tensors

2.1 Vectors and 1-forms

Definition: 2.1. Let M be a differential manifold. A tangent vector at $P \in M$ is an operator **t**: $F^{\infty} \to \mathbb{R}$ such that for every $f, g \in F^{\infty}$ and real numbers α, β

- **t** is linear: $\mathbf{t}(\alpha f + \beta g) = \alpha \mathbf{t}(f) + \beta \mathbf{t}(g);$
- **t** satisfies the derivation property: $\mathbf{t}(fg) = g(P)\mathbf{t}(f) + f(P)\mathbf{g}$.

The vector is an abstraction of the derivative operator. A vector field is such tangent vectors defined at every point of the manifold. We often denote a vector as $d/d\lambda$, where $\lambda \in \mathbb{R}$ which parametrizes a smooth curve. In component notation, we write an upper index after the corresponding letter i.e. V^{μ} . 1-forms follows similar definitions, the only difference is to replace F^{∞} by V, the tangent vectors. In another word, 1-forms annihilate vectors into real numbers. It is denoted as ω_{ν} , a letter with a lower index.

2.2 General tensors

A general tensor is a multilinear map while a vector space is a linear map, of course. A (r, s)-tensor is defined as $T := V^1 \otimes V^2 \otimes \ldots \otimes V^r \otimes \omega_1 \otimes \omega_2 \otimes \ldots \otimes \omega_s$ where V^i are vectors and ω_j 1-forms. Each vector and 1-form comes from an individual linear space, which follows the definitions, and thus, the tensor made out of them is "multilinear". In a neat fashion to put it, a tensor is the tensor products of vectors and 1-forms. Thus, it denoted as $T^{\mu_1\mu_2...\mu_r}_{\nu_1\nu_2...\nu_s}$.

2.3 Form algebra

Since we have 1-forms, we are able to compose *n*-forms with the help of " \otimes ". But actually, it is not the case. Forms are tensors with antisymmetric lower indices, therefore we use wedges (\wedge) to connect forms rather than \otimes .

Wedge product of p-form A and q-form B is

$$(A \wedge B)_{\mu_p \nu_q} \equiv (A \wedge B)_{\mu_1 \dots \mu_p \nu_1 \dots \nu_q} := \frac{(p+q)!}{p!q!} A_{[\mu_i \mu_p} B_{\nu_j \nu_q]}$$

where μ_i, ν_j abbreviate indices before μ_p, ν_q .

Properties of wedge products:

$$A \wedge B = (-1)^{pq} B \wedge A$$

$$(A \wedge B \wedge C)_{\mu_p \nu_q \rho_r} = \frac{(p+q+r)!}{p!q!r!} A_{[\mu_i \mu_p} B_{\nu_j \nu_q} C_{\rho_k \rho_r]}$$

Exterior derivatives The exterior derivatives are carried out by the d operator which has the following properties.

- Scalar: $df := \partial_{\mu} dx^{\mu}$ or $(df) := \partial_{\mu} f$
- Vector: $df\left(\frac{d}{d\lambda}\right) := \frac{df}{d\lambda}$
- Form: $d\omega := d(\omega_{\mu_i\mu_p}dx^{\mu_i} \wedge dx^{\mu_p}) = d\omega_{\mu_i\mu_p} \wedge dx^{\mu_i} \wedge dx^{\mu_p} = \partial_\lambda \omega_{\mu_i\mu_p}dx^\lambda \wedge dx^{\mu_i} \wedge dx^{\mu_p}$ Or², $(d\omega)_{\lambda\mu_i\mu_p} = \partial_{[\lambda}\omega_{\mu_i\mu_p]} = \partial_\lambda \omega_{\mu_i\mu_p} - \partial_{\mu_i}\omega_{\lambda\mu_p} - \partial_{\mu_p}\omega_{\mu_i\lambda}$

Properties of wedge product Since d is nothing but the differential when acting on a scalar function, then it should satisfy the product rule. And indeed, it satisfies a modified product rule:

$$d(\omega \wedge \eta) = d\omega \wedge \eta + (-1)^p \omega \wedge d\eta$$

where ω is a *p*-form. If $\omega = dA$ then ω is said to be exact; if $d\omega = 0$, ω is closed. Then we have the following properties:

- If ω is exact then it is also closed. Or, $d \circ d \equiv 0$, since ∂ 's commute;
- If the topology is trivial then closed forms are exact.

Hodge Duality In *n* dimensional space, we have the duality operation defined below.

$$(*A)_{\mu_{i}\mu_{n-p}} := \frac{1}{p!} \epsilon^{\nu_{i}\nu_{p}}{}_{\mu_{i}\mu_{n-p}} A_{\nu_{i}\nu_{p}}$$
$$**A = (-1)^{s+p(n-p)} A$$

3 Tensor acquaintances

3.1 The metric

The metric is the most fundamental quantity in general relativity which entails everything. The metric of our spacetime is a symmetric tensor with 2 lower indices. Let's a few examples.

- 3-D Euclidian space in Cartesian coordinates: $ds^2 := dx^2 + dy^2 + dz^2 := \delta_{ij} dx^i dx^j$
- 3-D Euclidian space in spherical coordinates: $ds^2 := dr^2 + r^2 d\theta^2 + r^2 \sin^2 \theta d\varphi^2$
- 4-D flat spacetime: $ds^2 = -dt^2 + d\mathbf{x}^2 := \eta_{\mu\nu} dx^{\mu} dx^{\nu}$

²This last relation is true and pretty pragmatic.

3.2 Levi-Civita tensor—the volume element

First introduce the Levi-Civita symbol:

$$\widetilde{\epsilon}_{\mu_i\mu_n} = \begin{cases} +1, & \text{even permutation of } 01\dots(n-1); \\ -1, & \text{odd permutation of } 01\dots(n-1); \\ 0, & \text{not a permutation.} \end{cases}$$

For a matrix $M^{\mu}_{\ \mu'}$,

$$\tilde{\epsilon}_{\mu_i'\mu_n'}|M| = \tilde{\epsilon}_{\mu_i\mu_n} M^{\mu_i}_{\ \mu_i'} M^{\mu_n}_{\ \mu_n'}$$

3.3 Electromagnetic tensor

The electromagnetic tensor is defined in this fashion,

$$F_{\mu\nu} := \begin{pmatrix} 0 & -E_1 & -E_2 & -E_3 \\ E_1 & 0 & B_3 & -B_2 \\ E_2 & -B_3 & 0 & B_1 \\ E_3 & B_2 & -B_1 & 0 \end{pmatrix}$$

And Maxwell's equations in curved spacetime is

$$\nabla_{\mu}F^{\nu\mu} = 4\pi J^{\nu}$$
$$\nabla_{[\mu}F_{\nu\lambda]} = 0$$

or in $form^3$ notation

$$dF = 0 \qquad d(*F) = *J.$$

In flat spacetime, F = dA where A is the 4-vector potential. There is an easy formula to generate *F. Write $\mathcal{E} = \mathbf{E} + i \mathbf{B}$, then $*\mathcal{E} = i(\mathbf{E} + i \mathbf{B}) = -\mathbf{B} + i \mathbf{E}$. the formula says the dual field is just $\mathbf{E} \to \mathbf{B}$ and $\mathbf{B} \to -\mathbf{E}$.

3.4 Curvatures

Riemannian tensor is defined as

$$R^{\rho}_{\sigma\mu\nu} := \partial_{\mu}\Gamma^{\rho}_{\nu\sigma} - \partial_{\nu}\Gamma^{\rho}_{\mu\sigma} + \Gamma^{\rho}_{\mu\lambda}\Gamma^{\lambda}_{\nu\sigma} - \Gamma^{\rho}_{\nu\lambda}\Gamma^{\lambda}_{\mu\sigma}$$
$$[\nabla_{\mu}, \nabla_{\nu}]V^{\rho} = R^{\rho}_{\sigma\mu\nu}V^{\sigma} - 2\Gamma^{\lambda}_{[\mu\nu]}\nabla_{\lambda}V^{\rho}$$

 ${}^{3}F_{\mu\nu}$ is a 2-form.

Properties of Riemann tensor

- $R_{\rho\sigma\mu\nu} = R_{[\rho\sigma]\mu\nu} = R_{\rho\sigma[\mu\nu]}$ (antisymmetric in first two and second two indices)
- $R_{\mu\nu\rho\sigma} = R_{\rho\sigma\mu\nu}$ (symmetric in first pair and second pair)
- $R_{\rho[\sigma\mu\nu]} = 0$ and $R_{[\rho\sigma\mu\nu]} = 0$
- $\nabla_{[\lambda} R_{\rho\sigma]\mu\nu} = 0$ (Bianchi Identity)

Other curvatures

- Ricci tensor is the trace of Riemann tensor, $R_{\mu\nu} = R^{\lambda}_{\ \mu\lambda\nu}$, which has the property that $R_{\mu\nu} = R_{\nu\mu}$.
- Ricci scalar $R = R^{\mu}{}_{\mu}$ (trace of Ricci tensor)
- Einstein tensor $G = R_{\mu\nu} \frac{1}{2}Rg_{\mu\nu}$, from Bianchi identity $\nabla^{\mu}G_{\mu\nu} = 0$

References

- [1] Sadri Hassani: Mathematical Physics—A Modern Introduction to Its Foundations, Springer
- [2] Spacetime and Geometry Sean M. Carroll, University of Chicago