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Abstract

There are two reasons why beginners complain that general relativity is difficult.

One is that the geometrical picture is hard to visualize: 4 dimensional, curved space-

time. The other one is the startling tensor algebra. Frankly speaking, nobody could

visualize 4-D curved space without the help of logics and analogies which indeed take

a lot of talents. Nevertheless, once you conquered the algebra, the pain would be much

eased. This article is a summary of my knowledge of the algebra.

1 Introduction

What’s general relativity all about? Well, it could be summed up in two statements:

• Spacetime is a curved pseudo-Riemannian manifold with a metric of signature (−+

++).

• The relationship between matter and the curvature of spacetime is contained in the

equation

Rµν −
1

2
Rgµν = 8πGTµν .

It is helpful to introduce manifolds since tensors fields are defined on them. An n-manifolds

are a class of geometrical objects that locally look like1 R
n. The second statement could

be decoded as “matter curves spacetime while spacetime tells matter where to go.” Next,

let’s run into tensors. I will first provide general ideas of tensors then move on to specific

ones.

1Homomorphism, to be precise.
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2 Tension of tensors

2.1 Vectors and 1-forms

Definition: 2.1. Let M be a differential manifold. A tangent vector at P ∈ M is an

operator t: F∞ → R such that for every f, g ∈ F∞ and real numbers α, β

• t is linear: t(αf + βg) = αt(f) + βt(g);

• t satisfies the derivation property: t(fg) = g(P )t(f) + f(P )g.

The vector is an abstraction of the derivative operator. A vector field is such tangent

vectors defined at every point of the manifold. We often denote a vector as d/dλ, where

λ ∈ R which parametrizes a smooth curve. In component notation, we write an upper

index after the corresponding letter i.e. V µ. 1-forms follows similar definitions, the only

difference is to replace F∞ by V , the tangent vectors. In another word, 1-forms annihilate

vectors into real numbers. It is denoted as ων , a letter with a lower index.

2.2 General tensors

A general tensor is a multilinear map while a vector space is a linear map, of course.

A (r, s)-tensor is defined as T := V 1 ⊗ V 2 ⊗ . . . ⊗ V r ⊗ ω1 ⊗ ω2 ⊗ . . . ⊗ ωs where V i are

vectors and ωj 1-forms. Each vector and 1-form comes from an individual linear space,

which follows the definitions, and thus, the tensor made out of them is “multilinear”. In

a neat fashion to put it, a tensor is the tensor products of vectors and 1-forms. Thus, it

denoted as T µ1µ2...µr
ν1ν2...νs .

2.3 Form algebra

Since we have 1-forms, we are able to compose n-forms with the help of “⊗”. But

actually, it is not the case. Forms are tensors with antisymmetric lower indices, therefore

we use wedges (∧) to connect forms rather than ⊗.

Wedge product of p-form A and q-form B is

(A ∧B)µpνq ≡ (A ∧B)µ1...µpν1...νq :=
(p+ q)!

p!q!
A[µiµp

Bνjνq]

where µi, νj abbreviate indices before µp, νq.

Properties of wedge products:

A ∧B = (−1)pqB ∧A

(A ∧B ∧ C)µpνqρr =
(p+ q + r)!

p!q!r!
A[µiµp

BνjνqCρkρr ]
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Exterior derivatives The exterior derivatives are carried out by the d operator which

has the following properties.

• Scalar: df := ∂µdx
µ or (df) := ∂µf

• Vector: df

(
d

dλ

)
:=

df

dλ

• Form: dω := d(ωµiµpdx
µi ∧ dxµp) = dωµiµp ∧ dxµi ∧ dxµp = ∂λωµiµpdx

λ ∧ dxµi ∧ dxµp

Or2, (dω)λµiµp
= ∂[λωµiµp] = ∂λωµiµp − ∂µi

ωλµp
− ∂µpωµiλ

Properties of wedge product Since d is nothing but the differential when acting on a

scalar function, then it should satisfy the product rule. And indeed, it satisfies a modified

product rule:

d(ω ∧ η) = dω ∧ η + (−1)pω ∧ dη

where ω is a p-form. If ω = dA then ω is said to be exact; if dω = 0, ω is closed. Then we

have the following properties:

• If ω is exact then it is also closed. Or, d ◦ d ≡ 0, since ∂’s commute;

• If the topology is trivial then closed forms are exact.

Hodge Duality In n dimensional space, we have the duality operation defined below.

(∗A)µiµn−p
:=

1

p!
ǫ
νiνp

µiµn−pAνiνp

∗ ∗A = (−1)s+p(n−p)A

3 Tensor acquaintances

3.1 The metric

The metric is the most fundamental quantity in general relativity which entails every-

thing. The metric of our spacetime is a symmetric tensor with 2 lower indices. Let’s a few

examples.

• 3-D Euclidian space in Cartesian coordinates: ds 2 := dx2 + dy2 + dz2 := δijdx
idxj

• 3-D Euclidian space in spherical coordinates: ds 2 := dr2 + r2dθ2 + r2 sin2 θdϕ2

• 4-D flat spacetime: ds 2 = −dt2 + dx2 := ηµνdx
µdxν

2This last relation is true and pretty pragmatic.
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3.2 Levi-Civita tensor—the volume element

First introduce the Levi-Civita symbol:

ǫ̃µiµn =





+1, even permutation of 01 . . . (n− 1);

−1, odd permutation of 01 . . . (n− 1);

0, not a permutation.

For a matrix Mµ
µ′ ,

ǫ̃µ′

iµ
′

n
|M | = ǫ̃µiµnM

µi

µ′

i
Mµn

µ′

n

3.3 Electromagnetic tensor

The electromagnetic tensor is defined in this fashion,

Fµν :=




0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0




And Maxwell’s equations in curved spacetime is

∇µF
νµ = 4πJν

∇[µFνλ] = 0

or in form3 notation

dF = 0 d(∗F ) = ∗J.

In flat spacetime, F = dA where A is the 4-vector potential. There is an easy formula to

generate ∗F . Write E = E+ iB, then ∗E = i(E + iB) = −B+ iE. the formula says the

dual field is just E → B and B → −E.

3.4 Curvatures

Riemannian tensor is defined as

Rρ
σµν := ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

[∇µ,∇ν ]V
ρ = Rρ

σµνV
σ − 2Γλ

[µν]∇λV
ρ

3
Fµν is a 2-form.
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Properties of Riemann tensor

• Rρσµν = R[ρσ]µν = Rρσ[µν] (antisymmetric in first two and second two indices)

• Rµνρσ = Rρσµν (symmetric in first pair and second pair)

• Rρ[σµν] = 0 and R[ρσµν] = 0

• ∇[λRρσ]µν = 0 (Bianchi Identity)

Other curvatures

• Ricci tensor is the trace of Riemann tensor, Rµν = Rλ
µλν , which has the property

that Rµν = Rνµ.

• Ricci scalar R = Rµ
µ (trace of Ricci tensor)

• Einstein tensor G = Rµν −
1
2Rgµν , from Bianchi identity ∇µGµν = 0
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